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TEMPERATURE--FREQUENCY DEPENDENCE OF MECHANICAL LOSSES UNDER PERIODIC 

DEFORMATION OF LAMINAR GLASS-CARBON PLASTICS 

L. S. Elistratova, V. V. Kolokol'chikov, 
and A. S. Podkopaev 

UDC 534~28+532.135 

Experimental results [1-3] indicate that under periodic deformation the temperature-- 
frequency locations of the relaxation maximums of the tangent of the mechanical loss angle 
tan 6 of a laminar composite and the material of its matrix do not agree. The reasons and 
regularities for such a shift of the tan ~ maximums remain unexplained within the framework of 
these papers. Meanwhile it is shown theoretically that the insertion of an elastic filler 
in a polymer material as well as the passage from shear over to longitudinal or bending vi- 
brations in unfilled polymers and composites will distort the relaxation spectrum and change 
the effective relaxation time [4]. 

Regularities in the temperature--frequency location and the magnitude of the loss tan- 
gent maximum and the real part of the Young's modulus in laminar composites are examined be- 
low. The mixture rules proposed in [5, 6] were used here. The formulas in [6] are approxi- 
mate and convenient for utilization for a large number of constituents in the composite. 
Moreover, they permit easy evaluation of the stress concentration coefficients in the 
composite material [7]. As is mentioned in [8], such approaches that take account of the 
actual mode of interaction between the composite constituents will permit obtaining results 
that are in satisfactory agreement with test data and are consequently adequate for tech- 
nical applications. 

I. Let a composite, which is transversally isotropic on the average, consist of a visco- 
elastic matrix and an elastic filler. The stochastic inhomogeneity of the composite is not 
taken into account. The energy dissipation mechanism is related only to the inelastic be- 
havior of the matrix [9]. There is no relaxation of the bulk modulus K in a viscoelastic 
composite. Shear relaxation is described by the Yu. N. Rabotnov kernel, i.e., in the opera- 
tor representation the shear modulus of the viscoelastic component is written as follows 
[i0]: 

= v=[~ - xY(x)l, (1.1) 

where ~x) is the Yu. N. Rabotnov resolvent operator while the rheological parameters x, X are 
expressed in terms of the unrelaxed G~ and relaxed Go values of the shear modulus and the 
effective relaxation time TE: 

z=--~Tv , % = ( G = - - G o ) / G = ~  (O<?~i) ,  (1.2) 

where y is the kernel singularity parameter. 

The expression for the Young's modulus operator of the viscoelastic constituent has the 

form [4] ~=E~[l--EE~(x~)],  

x z = --T~ v = x + G~Z/(3K ~ G~), E~ = 9 g v ~ / ( 3 g  + G~), (1.3) 
ZE = ~Z, t/q = t + G J 3 K .  
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We direct the coordinate axis X3 perpendicularly to the layers. For the mixture rule 
[6], the operator values of the nonzero matrix components of the effective elastic moduli Cmn 
will have the form 

~11 = V1~1 + /)2"2 = Cll  [' - -  Z l l  ~ (X)], 

~ = ~ + ~ = c,~ [~ + z ~  (x)], 

~E~ K )  ~,~-~'~ ~ ~ ( ~ ) + x ~ ) R ~ ) l '  ( 1 .4 )  

~:~ - c ~ [, - z ~  (~0], 
-"- .... 33 

VlE2 2[_ v2Et 

^ ~ : ~  - c ~  [l - z~,~ (x~)], C~ - -  v~a~ +v2~ 1 
where 

in which 

033--vIE 2+v2E 1 Cla= Vlt--v'----'-~ -- C3~' 

(l.5) 

u=~,+2G, ~,=K--2G/3, 
z l = x + X - - X  1, x2=x--X~--X a, % = x + X  4, 

Vl E2'qx 2G~% i8KIG~Z 

�9 -,~ tUOO X4 = V2~1%/ G' MQ : 1210 2 -~ /22Q 1, Q = E ,  G, (1.6) 
co oo oo oo 2 ~ 

CIIXi I = 4rig i X13, C12X12 = CIIXII/ ' X33 Xl' %44 VlC4 ~176 

VlX1X 3 

: ) , 
�9 I "-I- ~ 2  

v 2 - -  (X--X 1+X 2-xa) vl t --  v ~ i -- v 2 

( " ) 
X (2) VlX3 I -~ X -- %1 @ X2 -- X3 * 13 ~-- ~ o  ~2 

Here v i, E., v. are the relative bulk content, the Young's modulus, and the Polsson ratio of 
the i-th p~aselwhlch is inelastic for i = i and elastic for i = 2 (the expresslon^ for^the 
Poisson ratio operator of the viscoelastic constituent is presented in [4]), ~i and %1 are 
operators whose form can be obtained by substituting the operator value of the shear modulus 

of the viscoelastic phase (i.i) into (1.6). 

Let us compare the expressions (1.4)-(1.6) with known expressions [ii] that have been 
derived for averaging [5]. It is seen from (1.4)-(1.6) that each of the coefficients Cmn, 
with the exception of C13, is determined by one operator, while C13 is expressed in terms of 
the sum of two operators. Meanwhile, as is shown in [ii], the coefficients C11 and C12 are 
characterized by the sup erposition of two operators upon averaging^accordlng to [5], and the 
coefficients C13, C~3, C4, by one operator, where the coefficient Ca, is determined for the 

mixing [6] exactly as in [5]. 

Attention is turned in (1.4) to the fact that for the laminar texture under considera- 

tion 

C12 i> C~ ( i .  7) 

for any values of the parameters of the composite constituents, while the inequality 
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C18 ~ C~ (1.8) 

is satisfied in the case Z~D(x~)~Z~)@(~2). 

Let us note that from the results of [ii] the inequality (1.8) follows for any values of 
the parameters of the composite constituents, while the inequality (1.7) follows under the 

condition 

\ 3Mn ] 

It is interesting to obtain the presence of effects described by the inequalities (i~7) 
and(l.8), by which the stress relaxation functions that are the kernels of the operators C~2 
and C~ can grow, from experiment. For the presence of these effects, it is important to ob- 

tain conditions for their validity. 

When bulk relaxation of the viscoelastic constitutent also holds in addition to shear 
relaxation, while the Poisson ratio of this constituent is a constant, the expressions for 
the elasticity coefficients of a two-constitutent composite during mixing [6] take the form 

v , ^  ^ ' II = Cll [i -- ~ii ~ (z)], C12 = Rig -- ~12 (l. 9) 

e , , =  ( 4 ) 1 .  

Here 
. v2E~Z , u2C~Z 

~ = o~'", x2 : x "ZF --'-'~ - '  x 1 x - f -  M M o 

o o ^  r o o  c o  ! o o  c o  t 

CllZll  : ulX 1 ~, Ol2XI2 : vl~, 1 ](, (733X33 : NIE2X, 

C18~13 ~ + V - -  , C44X44 "-~ V 1 2~t 
k 1 

Cmn are determined by (1.5). 

It follows from (1.9) that in the case of constancy of the Poisson ratio, each of the 
coefficients Cmn is characterized by one operator. Moreover, in contrast to (1.7) and (1.8) 
the following inequality is valid 

It is useful to have expressions for the technical elastic moduli. The Young's modulus 
of a composite in the plane of the layers is expressed in terms of the coefficients Cij as 

follows: 

G3 (% + c,2) -2c~ (i. i0) 

Substituting the unrelaxed values of the elasticity matrix coefficient [6] into (ioi0), 
we obtain for the case of a two-constituent composite 

Ell = hE1 + v2E2 ~ AI + A2, 

A, - ~,~2 ( h -  h? G G  G = ~'~ ( G h - G ~ )  ~ 
viE 1 + v2E 2 v ie  ~ + v2E 1 

(1.11) 

To the accuracy of the terms in the denominator of At which contains squares of the Pois- 
son ratios of the constituents, the expression (i.ii) differs only in the last term from the 
expression [4] obtained for averaging [5]. 

In order to analyze the magnitude and temperature--frequency location of the mechanical 
loss peak for tension~ompression vibrations in the plane of the layers, we examine the opera- 
tor structure of the Young's modulus (I.ii). For simplicity, we first consider the Poisson 
ratio of the viscoelastic constituent a constant. In place of the Young's modulus El we sub- 
stitute its operator value (1.3) into (1.11), and reducing the function of the operators to 
standard form, we obtain 

, = E? - - + (x O ], {i. 12) 
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where Ei~ is determined by the equality (I.Ii) with the substitution Ex § E~, while 

~ 2  

E z? + E1 iJ = : : , 

Ei E2XE 

The correction h2 in the expression for the elastic modulus (i.ii) specifies the appear- 
ance of a term with the effective relaxation time x~3)in the operator relationship (1.12). 
I t  f o l l o w s  f rom t h e  c o m p a r i s o n  o f  t h e  e x p r e s s i o n s  f o r  5 x~ ~) and x~ 3) t h a t  in  t h e  i m p o r t a n t  
practical case when the content of the constituents in the composite is approximately iden- 
tical, the relaxation times x~ =) and x~ 3) differ insignificantly. Therefore, the mixings [5, 
6] in the example being considered of tension-compression vibrations in the plane of the com- 
posite result in expressions with approximately identical relaxation time spectra. It hence 
follows that the temperature--frequency location of the maximums of the tangent of the mechani- 
cal loss angle will be practically identical for both mixing cases under consideration. 

A more exact approximation of the operator expression for the Young's modulus (i.ii) is 
the relationship obtained with relaxation of the Poisson ratio vl taken into account. It 
turns out that if the relaxation of ~i is taken into account in the terms containing the prod- 
uct ~IE~ in the numerators of the corrections ~ and. A2, then the ~~176 structure of (1.12) 
will not change. The effective relaxation times x~ I), x~ 2), and x~ 3) remain the same. Only 
the relaxation intensities X~ I), X~ 2) , and X~3) change n~gligibly. 

We also note the fact of relaxation time spectrum broadening for tension--compression vi- 
brations in the plane of the composite layers as compared with the spectrum of the homogeneous 
viscoelastic constitutent because of the appearance of additional distributions with the ef- 
fective relaxation times x~ ~)" and x~ 3).- Since the magnitude of the parameter Y can be a mea- 
sure of the spread in the relaxation spectrum [12], it then follows that the value of 
the effective singularity parameter of a laminar composite should be less than the corre- 
sponding value of the singularity parameter for the viscoelastic matrix. 

2. We illustrate the regularities obtained by numerical computations of the frequency- 
dependent elastic and damping characteristics of laminar glass- and carbon-plastics (the rela- 
tive bulk content of resin is vt, of glass fabric v2, of carbon fabric vs) in the area of ma- 
trix passage from the glassy to the highly elastic state. We evaluate the dissipative and 
elastic characteristics as a function of the dimensionless quantity mT, which is the product 

cyclic frequency ~ by T = (TET~)~2 , the geometric mean of the relaxation time Tg of the and 
the retardation To [13]. It is possible to go over to the temperature dependences of the loss 
tangent and the dynamic Young's modulus by taking into account the relation of the relaxation 
time T~ to the temperature T. It is customary to describe this relation by the Arrhenius for- 
mula 
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�9 ~ = T o e x p ( H / R r ) ,  (2.1) 

where To is the characteristic time, H is the activation energy of the relaxation process, and 
R is the universal gas constant. 

We give the viscoelastic properties of the epoxy resin in terms of the complex shear modu- 
li [14] corresponding to the Rabotnov and Rzhanitsyn relaxation functions. We take for the 
epoxy resin GI = 4-10 ~ Pa, G~ = 3"106 Pa [15], v~ = 0.35, for the glass fabric E= = 7"i0 I~ 

Pa, ~2 = 0.22, and the carbon fabric E3 = 3"10 x~ Pa, ~a = 0.20 [16]. Constructing the vector 
diagram of the complex shear modulus of the epoxy resin by means of data from [15], we obtain 
the numerical value of the singularity parameter y = 0.3. We neglect relaxation of the bulk 
modulus. 

Presented in Fig. 1 are graphs of the dynamic Young's modulus E' and the loss tangent 
for periodic deformation of the specimen in the plane of the layers tan 6E as a function of the 
quantity log mm. The specimen is a carbon plastic with resin content vl = 0~ The computa- 
tion was performed by Voight averaging when the deformations are considered equal at all points 
of the composite, and also according to the mixture rules [5, 6] (curves 1-3, respectively). 
It is assumed that the properties of the epoxy resin are described by an exponential kernel. 

It is seen from Fig. 1 that both models [5, 6] that take account of the dependence of 
the coupling of the composite elements on the kind of stress state yield the very same loca- 
tion for the maximum of tan ~E on the frequency (temperature) axis. The magnitudes of the loss 
tangent and the dynamic modulus differ by not more than 4%. The maximal value of tan ~E in the 
case of Voight averaging is approximately 7 times less than for mixing [5, 6]. 

As the magnitude of the parameter y changes, the maximum of tan 6 E shifts towards higher 
frequencies along the log ~T axis, or as follows from (2.1), towards low temperatures. In 
Fig. 2 this shift is seen as well in an example of a glass-carbon plastic of the following com- 
position: v~ = 0.45, v= = 0.32, va = 0.23. Curves 1 and 2 correspond to giving the viscoelas- 
tic properties of the composite matrix by Rabotnov and Rzhanitsyn relaxation kernels. Pre- 
sented in this same graph are dependences of the magnitude of the loss maximum on the matrix 
parameter y. 

The effect of the shift in the loss tangent maximum as the magnitude of the parameter y 
changes can be used to monitor changes in the matrix structure during exploitation of arti- 
cles from composites since the singularity parameter u is structure-sensitive and depends 
essentially on the material treatment and exploitation conditions [12]. 

Let us note that for a Rabotnov kernel describing the shear relaxation of a homogeneous 
material, the temperature--frequency location of the loss maximum during shear strains and 
any values of the singularity parameter y corresponds to the condition ~T = i, which follows 
from the expression [17] 

~8 = (GolG=) ~I2~, (2.2) 

since (TC/~O) Y = Go/G~ [12]. 

As regards the condition of the loss maximum in a homogeneous material during tension-- 
compression vibrations, it is easily written down by noting that the operator expression 
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(1.3) can be obtained from (i.i) and (1.2) by the replacements r e § ~E' Go § Eo, G~ § E~. 
Making this substitution in the equality (2.2), we find the condition for maximum tan 6E: ~r = 
(GoE~/G~Eo)~2y. 

The almost jumplike shift in the location of the maximum tan 6 E along the frequency (tem- 
perature) axis upon the addition of a negligible quantity (just several percent) of elastic 
filler to the viscoelastic matrix (Fig. 3, where the curves i and 2 correspond to a carbon- 
plastic and a glass-plastic) is of special interest. The computation was performed by the 
mixture rules [6]. The matrix properties were given by an exponential kernel. 

The dependence of the maximal loss value in the carbon-plastic on the bulk epoxy resin 
content is represented in Fig. 4. Curve 1 corresponds to a Voight shift. The rheological 
properties of the composite matrix are given in terms of the exponential relaxation kernel. 
The remaining curves correspond to a shift according to [6]. Curves 2 and 3 correspond to 
giving the matrix properties in terms of an exponential and a Rabotnov kernel. It is seen 
from the graph that log tan 6 m is proportional to vl in the range of variation from 0.2 to 0.8 
for the relative bulk epoxy resin concentration. 

It is interesting to note that the domain of an abrupt diminution in the magnitude of 
the loss tangent maximum (see Fig. 4) upon the addition of just several percent of carbon 
fabric corresponds to an abrupt shift in the location of this maximum on the frequency (tem- 
perature) axis in Fig. 3. The dependences represented in Fig. 4 are in agreement with the 
experimental results [18]. 

3. The effect of a shift in the location of the maximum tangent of the composite mechani- 
cal loss angle along the frequency (temperature) axis as compared with the location of the 
corresponding maximum of the matrix was detected experimentally in EDT-10 epoxy resin speci- 
mens and in glass-plastics with it as base. The glass-plastic was a 14-1ayer quasi-isotropic 
composite, i.e., the stacking of each glass fabric layer was at a 60 ~ angle to the preceding 
layer, and contained 30% resin and 70% glass fabric. Specimens of 160 • 16 • 4 mm were fab- 
ricated from glass-plastic slabs. The epoxy resin specimens were 150 • ii x i0 mm in size. 

The temperature dependences of the loss tangent and the elastic modulus (Fig. 5) were 
measured on an "Elastomat" apparatus by the method of a resonance rod with bending vibrations 
at an 800-Hz frequency in an amplitude-independent domain. The passage from the glassy to 
the highly elastic state was investigated. The points on the graph correspond to the resin 
measurement data, and the crosses to the composite. The shift in the composite maximum tan ~E 
as compared with the maximum in the resin was 14~ The Young's modulus of the glass plastic 
was practically unchanged in the whole temperature range investigated and was 4"10 I~ Pa. The 
Poisson ratio of the epoxy resin, measured at room temperature, was 0.37. 
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DYNAMIC PHOTOELASTIC PROPERTIES OF AN EPOXY RESIN ABOVE THE ELASTIC LIMIT 

B. M. Zhiryakov, V. G. Malinin, 
and V. F. Obesnyuk 

UDC 539.30 

Epoxy resins are widely used as optically sensitive stress transducers for both static 
and dynamic loading methods. Their photoelastic properties have been well studied in the 
range of elastic deformation down to loading times on the order of 10 -5 sec [i, 2]~ However, 
there is almost no experimental data in the literature for compression above the elastic limit 
due to the brittle fracture of glassy polymers. In the present study, we were successful in 
measuring the photoelastic effect in a broader range of pressures by loading the material with 
compression pulses of about i0 -~ sec duration. 

i. Experimental Unit and Measurement Method. The compression pulses were created by a 
laser operated in the modulated Q-factor regime. The duration of the laser pulse was 30 nsec 
at half-height. The output energy was 0.65 J and the diameter of the focal spot was about 1 
mm. Focusing was done on a specimen of ED-6, the surface of which was covered by a 50-~m- 
thick copper foil. A film of distilled water about 1 mm thick was placed on the foil to ob- 
tain sufficiently high pressures. The amplitude of the pressure pulses in the polymer here 
was on the order of 1 GPa, with a duration of about 10 -7 sec. Figure 1 shows a profile of 
the pressure pulse (time scale of grid 50 nsec) obtained with a thin (i00 ~m) quartz trans- 
ducer. The profile is extended somewhat compared to the radiation pulse, a fact connected 
with the multiple reflections and interference of the pressure pulse in the foil due to the 
substantial difference in the acoustic impedances of the copper and epoxy resin. 

We used a standard method [i] to observe the dynamic photoelastic effect. We used a vari- 
ant in which the transmitting radiation passed through a specimen placed between an analyzer 

Fig. 1 
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